Day44:LeedCode 188.买卖股票的最佳时机IV 309.最佳买卖股票时机含冷冻期 714.买卖股票的最佳时机含手续费

admin2024-07-05  38

188. 买卖股票的最佳时机 IV

给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

示例 2:

输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
     随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

  • 1 <= k <= 100
  • 1 <= prices.length <= 1000
  • 0 <= prices[i] <= 1000

思路:

1.确定dp数组以及下标的含义

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

0 表示不操作
1 第一次持有
2 第一次卖出
3 第二次持有入
4 第二次卖出
.....
题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了

2.确定递推公式

达到dp[i][1]状态,有两个具体操作:

1)操作一:第i天买入第一支股票了,那么dp[i][1] = dp[i-1][0] - prices[i]

2)操作二:第i天没有操作,而是沿用前一天买入第一支股票的状态,即:dp[i][1] = dp[i - 1][1]

达到dp[i][2]状态,有两个具体操作:

1)操作一:第i天卖出第一支股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]

2)操作二:第i天没有操作,沿用前一天卖出第一支股票的状态,即:dp[i][2] = dp[i - 1][2]

达到dp[i][3]状态,有两个具体操作:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

达到dp[i][4]状态,有两个具体操作:

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

........同理可以类比剩下的状态

3.dp数组如何初始化

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例

k=2,prices=[1,2,3,4]

Day44:LeedCode 188.买卖股票的最佳时机IV 309.最佳买卖股票时机含冷冻期 714.买卖股票的最佳时机含手续费,第1张

代码参考:

class Solution {
    public int maxProfit(int k, int[] prices) {
  int[][] dp=new int[prices.length][2*k+1];
  //初始化
  for(int i=1;i<2*k+1;i=i+2){
   dp[0][i]=-prices[0];
  }
  for(int i=1;i<prices.length;i++){
for(int j=1;j<2*k+1;j++){
    //奇数买入
if( j%2==1){
dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-1]-prices[i]);
}
    //偶数卖出
    if(j%2==0){
      dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-1]+prices[i]);
    }
}
  }
  return dp[prices.length-1][2*k];
    }
}

309. 买卖股票的最佳时机含冷冻期

给定一个整数数组prices,其中第  prices[i] 表示第 i 天的股票价格 。​

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: prices = [1,2,3,0,2]
输出: 3 
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

示例 2:

输入: prices = [1]
输出: 0

提示:

  • 1 <= prices.length <= 5000
  • 0 <= prices[i] <= 1000

思路:

将交易状态化为四种

Day44:LeedCode 188.买卖股票的最佳时机IV 309.最佳买卖股票时机含冷冻期 714.买卖股票的最佳时机含手续费,第2张

动态规划五部曲:

1.确定dp数组以及下标的含义

dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。

j=0:今天购入了股票/以前购买了股票还没卖出

j=1:今天卖出股票

j=2:冷冻期

j=3:今天没有股票在手,且不是今天卖出的股票

2.确定递推公式

dp[i][0]=max(dp[i-1][0],dp[i-1][3]-prices[i],dp[i-1][2]-prices[i])

dp[i][1]=dp[i-1][0]

dp[i][2]=dp[i-1][1]

dp[i-1][3]=max(dp[i-1][3],dp[i-1][2])

3.初始化

dp[0][0]=-prices[0]

dp[0][1]=0

dp[0][2]=0

dp[0][3]=0

4.遍历顺序

从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

5.举例

代码参考:

class Solution {
    public int maxProfit(int[] prices) {
  int[][] dp = new int[prices.length][4];
  //初始化
  dp[0][0]=0-prices[0];
  dp[0][1]=0;
  dp[0][2]=0;
  dp[0][3]=0;
  for(int i=1;i<prices.length;i++){
   dp[i][0]=Math.max(Math.max(dp[i-1][0],dp[i-1][2]-prices[i]),dp[i-1][3]-prices[i]);
   dp[i][1]=dp[i-1][0]+prices[i];
   dp[i][2]=dp[i-1][1];
   dp[i][3]=Math.max(dp[i-1][3],dp[i-1][2]);
  } 
  int n=prices.length;
  int result=Math.max(Math.max(dp[n-1][3],dp[n-1][2]),dp[n-1][1]);
  return result;    }
}

714. 买卖股票的最佳时机含手续费

给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:  
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

示例 2:

输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

提示:

  • 1 <= prices.length <= 5 * 104
  • 1 <= prices[i] < 5 * 104
  • 0 <= fee < 5 * 104

思路:

手续费相当于也是买股票的成本的一部分

Day44:LeedCode 188.买卖股票的最佳时机IV 309.最佳买卖股票时机含冷冻期 714.买卖股票的最佳时机含手续费,第3张

动态规划五部曲:

1.确定dp数组以及下标的含义

dp[i][0],第i天状态为持有/购买股票,能够达到的最大利润

dp[i][1],第i天状态为不持有/卖出股票,能够达到的最大利润

2.确定递推公式

dp[i][0]=Math.max(dp[i-1][0],dp[i-1][1]-prices[i]-fee)

dp[i][1]=Math.max(dp[i-1][1],dp[i-1][0]+prices[i])

3.初始化

dp[0][0]=-prices[0]-fee

dp[0][1]=0

4.遍历顺序

从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

5.举例

代码参考:

class Solution {
    public int maxProfit(int[] prices, int fee) {
    int[][] dp= new int[prices.length][2];
    //初始化
    dp[0][0]=0-prices[0];
    dp[0][1]=0;
    //
    for(int i=1;i<prices.length;i++){
        dp[i][0]=Math.max(dp[i-1][0],dp[i-1][1]-prices[i]);
        dp[i][1]=Math.max(dp[i-1][1],dp[i-1][0]+prices[i]-fee);
    }
 return dp[prices.length-1][1];
    }
}
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明原文出处。如若内容造成侵权/违法违规/事实不符,请联系SD编程学习网:675289112@qq.com进行投诉反馈,一经查实,立即删除!