DataWhale机器学习——第六章支持向量机学习笔记

admin2024-07-01  8

第六章 支持向量机

6.1 间隔与支持向量 支持向量机(SVM)是一种二分类模型,通过最大化分类间隔找到最优分类超平面。支持向量是离决策边界最近的样本点。

6.2 对偶问题 对偶问题通过拉格朗日乘子法,将原始优化问题转换为对偶问题,使得求解高维空间中的最优超平面变得更为简单。

6.3 核函数 核函数用于将低维数据映射到高维空间,使得非线性可分问题在高维空间中变得线性可分。常见核函数有线性核、多项式核和高斯核。

6.4 软间隔与正则化 软间隔SVM通过引入松弛变量,允许一定的分类错误,提高模型的泛化能力。正则化参数用于平衡分类间隔和分类错误。

6.5 支持向量回归 支持向量回归(SVR)用于解决回归问题,通过引入ε不敏感损失函数,控制预测误差范围。

6.6 核方法 核方法广泛应用于各种机器学习算法中,如核PCA、核LDA等,通过核函数将线性方法扩展到非线性情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明原文出处。如若内容造成侵权/违法违规/事实不符,请联系SD编程学习网:675289112@qq.com进行投诉反馈,一经查实,立即删除!