数据挖掘盒图 数据挖掘 orange

admin2024-05-30  11

决策树

决策树基本

决策树类似流程图,内部节点表示在一个属性的上的测试,比如age属性是否大于30等,每个分支代表一个属性测试的输出,最下层的叶子节点代表具体的类。

下面是《数据挖掘:概念与技术》上的例子,数据为:

数据挖掘盒图 数据挖掘 orange,数据挖掘盒图 数据挖掘 orange_数据结构与算法,第1张

根据ID3算法生成的决策树如下:

数据挖掘盒图 数据挖掘 orange,数据挖掘盒图 数据挖掘 orange_python_02,第2张

生成据测树的基本算法

数据挖掘盒图 数据挖掘 orange,数据挖掘盒图 数据挖掘 orange_人工智能_03,第3张

在这一算法步骤(6)中计算信息增益

我们对每个分布计算期望信息。
对于age= ”<=30” :s11 = 2,s12 = 4 ==>I(s11, s21) = 0.971
对于age = ”31...40” :s12=4,s22=0 ==>I(s12, s22) = 0
对于age= ”>40” :s13=3,s23=2 ==>I(s13, s23) = 0.971

E(age) = (5*I(s11, s21)+4*I(s12, s22)+5*I(s13, s23))/14

信息增益为:gain(age) = I(s1,s2)-E(age)=0.246
类似地,我们可以计算Gain(income)= 0.029, Gain(student) = 0.151和Gain(credit_rating)= 0.048,由此age属性此时具有最高的信息增益。.5.

C4.5

由于ID3算法在实际应用中存在一些问题,于是Quinlan提出了C4.5算法,严格上说C4.5只能是ID3的一个改进算法。  

C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:  

1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;  

2) 在树构造过程中进行剪枝;  

3) 能够完成对连续属性的离散化处理;  

4) 能够对不完整数据进行处理。 

C4.5的基本步骤:

输入参数:数据集合dataset,属性列表attr_list

创建根节点R

如果所有数据都属于同一类,标记R的类别为该类。

如果当前attrlist集合为空,r的类为当前数据集类别最多的类

递归过程:

从attrlist中选择信息增益率最大的属性A

根据A的每一个值v,将DataSet划分为不同的子集DS,对于每一个DS:
创建节点C
如果DS为空,节点C标记为DataSet中样本最多的类别
如果DS不为空,节点C=C4.5(DS, featureList - F)
将节点C添加为R的子节点

Orange中的决策树 

Orange中实现了多个算法支持决策树。包含TreeLearner,SimpleTreeLearner,C45Learner。

在Orange中使用C4.5需要按照如下步骤更新Orange

  1. 下载:http://www.rulequest.com/Personal/c4.5r8.tar.gz,并解压缩
  2. 下载ensemble.cbuildC45.py到上一步骤解压缩的文件夹的src子文件夹中。
  3. 运行buildC45.py文件

以使用甚广的C4.5算法为例,在Orange中的使用方法如下:

import Orange

iris = Orange.data.Table("iris")
tree = Orange.classification.tree.C45Learner(iris)

print "\n\nC4.5 with default arguments"
for i in iris[:5]:
    print tree(i), i.getclass()


输出结果如下:

Iris-setosa Iris-setosa
Iris-setosa Iris-setosa
Iris-setosa Iris-setosa
Iris-setosa Iris-setosa
Iris-setosa Iris-setosa


同样可以使用可视化的方式使用决策树:

下图使用了C4.5widget组件对iris数据进行了建模,并用组件predictions和结果做了比对。

数据挖掘盒图 数据挖掘 orange,数据挖掘盒图 数据挖掘 orange_决策树_04,第4张

生成的决策树如下:

数据挖掘盒图 数据挖掘 orange,数据挖掘盒图 数据挖掘 orange_数据结构与算法_05,第5张

参考资料

信息增益:http://en.wikipedia.org/wiki/Information_gain

数据挖掘:概念与技术 http://book.douban.com/subject/2038599/

数据挖掘导论:http://book.douban.com/subject/5377669/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明原文出处。如若内容造成侵权/违法违规/事实不符,请联系SD编程学习网:675289112@qq.com进行投诉反馈,一经查实,立即删除!