Springboot集成hanlp快速入门demo

admin2024-04-03  0

一、hanlp介绍

HanLP是一系列模型与算法组成的NLP工具包,目标是普及自然语言处理在生产环境中的应用。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。内部算法经过工业界和学术界考验,配套书籍《自然语言处理入门》已经出版。目前,基于深度学习的HanLP 2.x已正式发布,次世代最先进的NLP技术,支持包括简繁中英日俄法德在内的104种语言上的联合任务。

HanLP提供下列功能:

  • 中文分词
    • HMM-Bigram(速度与精度最佳平衡;一百兆内存)
      • 最短路分词、N-最短路分词
    • 由字构词(侧重精度,全世界最大语料库,可识别新词;适合NLP任务)
      • 感知机分词、CRF分词
    • 词典分词(侧重速度,每秒数千万字符;省内存)
      • 极速词典分词
    • 所有分词器都支持:
      • 索引全切分模式
      • 用户自定义词典
      • 兼容繁体中文
      • 训练用户自己的领域模型
  • 词性标注
    • HMM词性标注(速度快)
    • 感知机词性标注、CRF词性标注(精度高)
  • 命名实体识别
    • 基于HMM角色标注的命名实体识别 (速度快)
      • 中国人名识别、音译人名识别、日本人名识别、地名识别、实体机构名识别
    • 基于线性模型的命名实体识别(精度高)
      • 感知机命名实体识别、CRF命名实体识别
  • 关键词提取
    • TextRank关键词提取
  • 自动摘要
    • TextRank自动摘要
  • 短语提取
    • 基于互信息和左右信息熵的短语提取
  • 拼音转换
    • 多音字、声母、韵母、声调
  • 简繁转换
    • 简繁分歧词(简体、繁体、臺灣正體、香港繁體)
  • 文本推荐
    • 语义推荐、拼音推荐、字词推荐
  • 依存句法分析
    • 基于神经网络的高性能依存句法分析器
    • 基于ArcEager转移系统的柱搜索依存句法分析器
  • 文本分类
    • 情感分析
  • 文本聚类
    • KMeans、Repeated Bisection、自动推断聚类数目k
  • word2vec
    • 词向量训练、加载、词语相似度计算、语义运算、查询、KMeans聚类
    • 文档语义相似度计算
  • 语料库工具
    • 部分默认模型训练自小型语料库,鼓励用户自行训练。所有模块提供训练接口,语料可参考98年人民日报语料库。

在提供丰富功能的同时,HanLP内部模块坚持低耦合、模型坚持惰性加载、服务坚持静态提供、词典坚持明文发布,使用非常方便。默认模型训练自全世界最大规模的中文语料库,同时自带一些语料处理工具,帮助用户训练自己的模型。

二、下载与配置

方式一、Maven

为了方便用户,特提供内置了数据包的Portable版,只需在pom.xml加入:

<dependency>
    <groupId>com.hankcs</groupId>
    <artifactId>hanlp</artifactId>
    <version>portable-1.8.4</version>
</dependency>

零配置,即可使用基本功能(除由字构词、依存句法分析外的全部功能)。如果用户有自定义的需求,可以参考方式二,使用hanlp.properties进行配置(Portable版同样支持hanlp.properties)。

方式二、下载jar、data、hanlp.properties

HanLP将数据与程序分离,给予用户自定义的自由。

1、下载:data.zip

下载后解压到任意目录,接下来通过配置文件告诉HanLP数据包的位置。

HanLP中的数据分为词典模型,其中词典是词法分析必需的,模型是句法分析必需的。

data
│
├─dictionary
└─model

用户可以自行增删替换,如果不需要句法分析等功能的话,随时可以删除model文件夹。

  • 模型跟词典没有绝对的区别,隐马模型被做成人人都可以编辑的词典形式,不代表它不是模型。
  • GitHub代码库中已经包含了data.zip中的词典,直接编译运行自动缓存即可;模型则需要额外下载。
2、下载jar和配置文件:hanlp-release.zip

配置文件的作用是告诉HanLP数据包的位置,只需修改第一行

root=D:/JavaProjects/HanLP/

为data的父目录即可,比如data目录是/Users/hankcs/Documents/data,那么root=/Users/hankcs/Documents/ 。

最后将hanlp.properties放入classpath即可,对于多数项目,都可以放到src或resources目录下,编译时IDE会自动将其复制到classpath中。除了配置文件外,还可以使用环境变量HANLP_ROOT来设置root。安卓项目请参考demo。

如果放置不当,HanLP会提示当前环境下的合适路径,并且尝试从项目根目录读取数据集。

三、代码工程

这里采用方式一集成,感兴趣的可以使用方式二集成

pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <artifactId>springboot-demo</artifactId>
        <groupId>com.et</groupId>
        <version>1.0-SNAPSHOT</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>

    <artifactId>hanlp-demo</artifactId>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>
    <dependencies>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-autoconfigure</artifactId>
        </dependency>
        <dependency>
            <groupId>com.hankcs</groupId>
            <artifactId>hanlp</artifactId>
            <version>portable-1.8.4</version>
        </dependency>


    </dependencies>
</project>

application.yaml

server:
  port: 8088

DemoApplication.java

package demo.et.hanlp.demo;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class DemoApplication {

   public static void main(String[] args) {
      SpringApplication.run(DemoApplication.class, args);
   }
}

code repository

  • GitHub - Harries/springboot-demo: a simple springboot demo with some components for example: redis,solr,rockmq and so on.

 

四、测试

package com.et.hanlp.demo;

import com.hankcs.hanlp.HanLP;
import com.hankcs.hanlp.collection.AhoCorasick.AhoCorasickDoubleArrayTrie;
import com.hankcs.hanlp.dictionary.CoreDictionary;
import com.hankcs.hanlp.dictionary.CustomDictionary;

/**
 * 演示用户词典的动态增删
 *
 * @author hankcs
 */
public class DemoCustomDictionary
{
    public static void main(String[] args)
    {
        // 动态增加
        CustomDictionary.add("攻城狮");
       // CustomDictionary.add("小金保");
        // 强行插入
        CustomDictionary.insert("白富美", "nz 1024");

        // 删除词语(注释掉试试)
//        CustomDictionary.remove("攻城狮");
        System.out.println(CustomDictionary.add("单身狗", "nz 1024 n 1"));
        System.out.println(CustomDictionary.get("单身狗"));


        String text = "攻城狮逆袭单身狗,迎娶白富美,走上人生巅峰,小金保值得你需要";  // 怎么可能噗哈哈!

        // AhoCorasickDoubleArrayTrie自动机扫描文本中出现的自定义词语
        final char[] charArray = text.toCharArray();
        CustomDictionary.parseText(charArray, new AhoCorasickDoubleArrayTrie.IHit<CoreDictionary.Attribute>()
        {
            @Override
            public void hit(int begin, int end, CoreDictionary.Attribute value)
            {
                System.out.printf("[%d:%d]=%s %s\n", begin, end, new String(charArray, begin, end - begin), value);
            }
        });
        System.out.println("########################################");
        // 自定义词典在所有分词器中都有效
        System.out.println(HanLP.segment(text));
    }
}

效果如下

true
nz 1024 n 1 
[0:3]=攻城狮 nz 1 
[5:8]=单身狗 nz 1024 n 1 
[11:14]=白富美 nz 1024 
[0:2]=攻城 vi 15 
[3:5]=逆袭 nz 199 
########################################
[攻城狮/nz, 逆袭/nz, 单身狗/nz, ,/w, 迎娶/v, 白富美/nz, ,/w, 走/v, 上/f, 人生/n, 巅峰/n]

五、引用

  • GitHub - hankcs/HanLP at v1.8.4
  • Spring Boot集成hanlp快速入门demo | Harries Blog™
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明原文出处。如若内容造成侵权/违法违规/事实不符,请联系SD编程学习网:675289112@qq.com进行投诉反馈,一经查实,立即删除!